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We have investigated the nature and experimental consequences of vapor-liquid asymmetry in near-critical
fluids within the framework of “complete scaling” �M. E. Fisher and G. Orkoulas, Phys. Rev. Lett. 85, 696
�2000�; Y. C. Kim et al., Phys. Rev. E 67, 061506 �2003��. We used the thermodynamic freedom for a choice
of the critical-entropy value to simplify “complete scaling” to a form with only two independent parameters,
responsible for two different sources of the asymmetry. We then developed a procedure to obtain these two
parameters from mean-field equations of state. By combining accurate liquid-vapor coexistence and heat-
capacity data, we have unambiguously separated two nonanalytic contributions from the two sources of vapor-
liquid asymmetry and proved the validity of “complete scaling.” Since the nonanalytic asymmetry effects in
the critical region are fully determined by the Ising critical exponents for the symmetric lattice-gas model, there
is no need for a special renormalization-group theoretical treatment of “non-Ising” asymmetry in fluid
criticality.
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I. INTRODUCTION

An appropriate choice of the order parameter is necessary
to describe critical phenomena in fluids in terms of the gen-
eral theory of phase transitions �1–4�. Thermodynamics itself
does not specify uniquely which set of variables is to be used
in describing critical behavior of real fluids and the choice is
commonly based on intuition, empirical considerations, or
made by comparison with a microscopic model.

The simplest and most important model to illuminate the
physics of critical phenomena in fluids is the lattice-gas
model. The lattice gas, which is a translation of the Ising
model to fluids �5�, has perfect symmetry with respect to the
density �, exhibiting a symmetric vapor-liquid coexistence
curve �6�. Hence, in the lattice gas, the arithmetic mean of
the liquid and vapor densities, the “diameter” of the coexist-
ence curve, is a vertical straight line. The order parameter in
the lattice gas is ��̂= ��−�c� /�c, where �c is the critical
value of the molecular density. However, in real fluids the
arithmetic mean of the liquid and vapor densities, which may
look approximately as a straight line, known as the rectilin-
ear diameter, generally, does not coincide with the critical
isochore �=�c.

It has been over 100 years since the “law” of the rectilin-
ear diameter was first proposed by Cailletet and Mathias �7�.
The “law” states that the mean of the liquid and vapor den-
sities, �� and ��, is a linear function of the temperature T,

�̂d =
�� + ��

2�c
= 1 + D��T̂� , �1�

where the coefficient D is the slope of the rectilinear diam-

eter, �T̂= �T−Tc� /Tc with Tc being the critical temperature.
While extrapolation of the rectilinear diameter to the critical

temperature is commonly used to obtain the critical density,
such a procedure may lead to a significant error, as shown in
Fig. 1. Some fluids, such as oxygen �8� �see also Ref. �6��
and xenon �9�, indeed follow the “law” of the rectilinear
diameter within the experimental accuracy. Moreover, the
“diameter,” accurately obtained by Hahn et al. �10� for 3He
very close to the critical point, is a straight line with an
almost zero slope; incidentally, this symmetry goes far be-
yond the range of the Ising-model asymptotic power law.
However, some fluids such as sulfur hexafluoride �SF6� �11�
and trifluorotrichloroethane �C2F3Cl3, Freon-113� �12� have
been found to exhibit strong deviations from the “law” of the
rectilinear diameter. In particular, the data on SF6 were con-
sidered as the first reliable experimental evidence of a “sin-
gular diameter” in fluids �13�. The “diameters” for several
fluids are shown in Fig. 2. A striking difference between such
fluids as SF6 and Freon-113 on the one hand and nitrogen
and neon �14� on the other hand is puzzling. Indeed, the
concept of the rectilinear diameter is essentially mean field.
Any classical equation of state, such as the van der Waals
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FIG. 1. Schematic illustration of a liquid-vapor coexistence
curve. Dashed line is the rectilinear diameter; �c� is the critical den-
sity extrapolated with the rectilinear diameter; �c is the actual criti-
cal density. The critical point �CP� is indicated by the circle.
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equation, yields asymptotically a rectilinear diameter near
the critical point. However, how can the rectilinear diameter
persist in some real fluids, which all exhibit the universal
nonanalytic �scaling� shape of the phase boundary?

A few theoretical models for the description of the “sin-
gular diameters” have been developed since the early 1970s.
These models, such as Mermin’s decorated lattice-gas model
�15� and Widom-Rowlinson’s penetrable-sphere model
�6,16�, all yield a slope of the “diameter” diverging at the
critical point as the heat capacity at constant volume CV,

d�d

dT
�

CV

kB
� A0

−��T̂�−�, �2�

where kB is Boltzmann’s constant, ��0.109 is an Ising uni-
versal critical exponent �17,18�, A0

− is a system-dependent
amplitude for the heat-capacity asymptotic power law in the
two-phase region. �Here and below the symbol � means
approximately equal, while the symbol � means asymptoti-
cally equal.� Therefore, the “diameter” is expected to contain

a nonanalytic term ���T̂�1−�,

�̂d = 1 + D1��T̂�1−� + D0��T̂� + ¯ . �3�

However, a more general formulation of fluid criticality,
suggested recently by Fisher and co-workers �19–21� and
known as “complete scaling,” yields a more significant addi-

tional nonanalytic term in the “diameter,” namely, ���T̂�2�

with ��0.326 �17,18�, so that

�̂d = 1 + D2��T̂�2� + D1��T̂�1−� + D0��T̂� + ¯ . �4�

The first nonanalytic term in Eq. �4�, ���T̂�2�, dominates
near the critical point since 2��1−�. The question arises: is
this term, or either of the two predicted nonanalytic terms,
experimentally detectable?

First of all, the exact form or even the existence of
nonanalytic terms in the “diameter” of real fluids has never
been detected unambiguously. While some fluids show
strong deviations from a rectilinear diameter �14�, many flu-

ids show very little or no deviations at all �6,9,14�. What is
the physical reason for the apparently so different asymmetry
in phase behavior of the different fluids?

Pestak et al. �14� studied experimental data for “diam-
eters” of several fluids in 1987. They concluded that the
slope of the rectilinear diameter far away from the critical
point and the amplitude of deviations from the rectilinear
diameter within the critical region are both proportional to
the product of molecular polarizability and density, which is
a measure of the relative significance of three-body interac-
tions. However, after reanalyzing the same data and includ-
ing additional fluid systems in the study, Singh and Pitzer
�22� found that the diameter slope shows a linear dependence
on the acentric factor and concluded that the shape of the
pair intermolecular potential should be the primary factor in
the slope of the diameter �at least, far away from the critical
point� rather than the relative strength of three-body interac-
tions. They also speculated that closer to the critical point the
shape of the two-body potential might have a similar effect
on the increase of the amplitude D1 in the nonanalytic term
of Eq. �3�. At that time, the existence of the more significant

��T̂�2� term present in Eq. �4� was not known.
In this paper we study the physical nature and experimen-

tal consequences of vapor-liquid asymmetry in near-critical
fluids within the framework of “complete scaling” originally
formulated by Fisher and co-workers �19–21�. Some princi-
pal results of our study have been presented in Ref. �23�. By
combining accurate liquid-vapor coexistence and heat-
capacity data, we have unambiguously separated two
nonanalytic contributions to vapor-liquid asymmetry and
proved the validity of “complete scaling.” We have shown
that in fluids there are two sources of vapor-liquid asymme-
try, one associated with a coupling between the symmetric
order parameter and entropy and another one associated with
a coupling between the order parameter and volume per mol-
ecule. We have developed a thermodynamic procedure to
obtain two parameters, responsible for these two sources of
asymmetry, from mean-field equations of state. We have also
demonstrated, with the help of crossover theory �4�, how the
rectilinear diameter splits into two nonanalytic terms near the
critical point.

In addition to the nonanalytic asymmetry in the vapor-
liquid coexistence, “complete scaling” explains the so-called
Yang-Yang anomaly �24� and the divergence of the Tolman
length near the critical point �25�. The concept of “non-Ising
asymmetry” in fluids was intensively explored by theoretical
physicists in the 1980s �26–28,30–32�. However, since the
asymmetry in fluid criticality are fully determined by the
Ising critical exponents for the symmetric lattice-gas model,
the effects of “non-Ising asymmetry” have no practical rel-
evance.

II. FISHER’S “COMPLETE SCALING”

For one-component fluids, the critical point is specified by
the critical temperature Tc, critical density �c, and critical
pressure Pc. The thermodynamic properties reduced by the
critical parameters are defined as follows:
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FIG. 2. “Diameters” of vapor-liquid coexistence for several flu-
ids. Experimental data for Freon-113 �12� and for SF6, nitrogen and
neon �14� are represented by symbols; solid curves are fits to Eq.
�45�.
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T̂ =
T

Tc
, �̂ =

�

�c
, P̂ =

P

�ckBTc
,

�̂ =
�

kBTc
, Â =

A

kBTc
, Ŝ =

S

kB
,

ĈV =
CV

kB
, �̂ = � �2P̂

��̂2	
T̂

= � ��̂

��̂
	

T̂

, �5�

where � is the chemical potential �Gibbs energy per mol-
ecule�, P is the pressure, S is the entropy per molecule, CV is
the isochoric heat capacity per molecule, A is the Helmholtz
energy per molecule, and �̂ is the isothermal susceptibility.

It is commonly accepted that the nonanalytic critical be-
havior of real fluids and fluids mixtures can be asymptoti-
cally described by scaling theory in terms of two indepen-
dent scaling fields, namely, h1 �“ordering” field� and h2
�“thermal” field� and two conjugate scaling densities,
namely, the order parameter 	1 �strongly fluctuating� and 	2
�weakly fluctuating�. The third field, h3 is the critical part,
which exhibits minimum with respect to a variation of the
order parameter, of an appropriate field-dependent thermody-
namic potential, such that

dh3 = 	1dh1 + 	2dh2. �6�

In scaling theory the thermodynamic potential h3 is a homo-
geneous function of h1 and h2. Asymptotically,

h3 � �h2�2−�f±� h1

�h2�2−�−�	 , �7�

where f± is a scaling function and the superscript 
 refers to
h2�0 and h2�0, respectively. The form of the scaling func-
tion is universal; however, it contains two thermodynami-
cally independent �but system-dependent� amplitudes. All
other asymptotic amplitudes are related to the selected ones
by universal relations. The critical exponents � and � are
universal within a class of critical-point universality. All flu-
ids and fluid mixtures belong to the Ising-model class of
universality �in which the order parameter is either a scalar
or a one-component vector� �1�. The Ising values for � and
�, given in the Introduction, are well established theoreti-
cally and confirmed experimentally �1–4,17,18�. The two

Ising amplitudes, Â0 and B̂0 can be determined by the
asymptotic power-law behavior of the two scaling densities
in zero ordering field �h1=0�,

	1 = � �h3

�h1
	

h2

� ± B̂0�h2��, �8�

	2 = � �h3

�h2
	

h1

�
Â0

±

1 − �
h2�h2�−�, �9�

and of the three scaling susceptibilities, “strong” �1, “weak”
�2, and “cross” �12 in zero ordering field,

�1 = � �	1

�h1
	

h2

� �̂0
±�h2�−
, �10�

�2 = � �	2

�h2
	

h1

� Â0
±�h2�−�, �11�

�12 = � �	1

�h2
	

h1

� �B̂0
�h2��

h2
�h2 � 0� , �12�

where the critical exponent 
=2−�−2��1.239 �17,18� and

the other Ising critical amplitude �̂0
± is related to B̂0 and Â0

±

through universal ratios, ��̂0
+Â0

+ / B̂0
2�0.0581, �̂0

+ / �̂0
−�4.8,

and Â0
+ / Â0

−�0.523 �18�. While the superscript 
 refers to the
states at h2�0 and h2�0, the prefactor 
 in Eq. �8� refers to
the branches of the order parameter at h1�0 and h1�0
sides, respectively.

In mean-field approximation, with �=0 and �=1/2, Eq.
�7� reduces to the asymptotic Landau expansion �29�,

− h3 � 1
2a0h2	1

2 + 1
24u0	1

4 − h1	1, �13�

where a0 and u0 are mean-field system-dependent ampli-
tudes.

In the lattice-gas model h1=��̂= ��−�c� /kBTc, h2=�T̂,

	1=��̂, and 	2=���̂Ŝ�, while −h3 is the critical part of the
grand thermodynamic potential �=−PV per unit volume V,
so that h3= �P− Pcxc� /�ckBTc, where Pcxc is the pressure
along the vapor-liquid coexistence which coincides with the
condition h1=0.

The lattice gas has perfect symmetry with respect to the
sign of the order parameter, whereas real fluids approach
such symmetry only asymptotically. To incorporate fluid
asymmetry into the scaling theory, in 1970s Mermin and
Rehr �33� and Patashinskii and Pokrovskii �34� introduced
the concept of mixing the independent physical fields into
the theoretical scaling fields �see also Refs. �35–37��. Ac-
cording to their approach, which we will call “incomplete
scaling,” the independent scaling fields in fluids are linear
combinations of chemical potential and temperature,

h1 = a1��̂ + a2�T̂, h2 = b1�T̂ + b2��̂ , �14�

while the dependent field h3=c1�P̂+c2�T̂. Since any two
independent critical amplitudes can be incorporated into the
scaling function f±, it is convenient to adopt a1=1 and b1

=1; then c1=1 while c2 becomes −��P̂ /�T̂�h1=0 taken at the
critical point. Therefore, the critical part of the field-
dependent thermodynamic potential remains the same as in
the lattice gas, since in linear approximation �P

− Pcxc� /�ckBTc=�P̂− ��P̂ /�T̂�h1=0,c�T̂. Furthermore, as
shown by Anisimov et al. �36,37�, since in classical thermo-
dynamics the absolute value of entropy is arbitrary, the criti-
cal value of entropy can be chosen upon practical conve-
nience. It is seen clearly from the basic thermodynamic
relation

dP = �d� + �SdT , �15�

that, if the critical entropy is adopted as Sc
=�c

−1��P /�T�h1=0,c, the coefficient a2 in Eq. �14� vanishes and
in linear approximation the chemical potential along the
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vapor-liquid coexistence does not depend on temperature.
However, the curvature of this dependence, determined by
the second derivative, is well defined. With this choice of the
critical entropy, the mixing term b2��̂ in “incomplete scal-
ing” becomes also well defined, being in lowest approxima-
tion the sole contribution to the vapor-liquid asymmetry in
real fluids. In particular, since ��̂=	1+b2	2=	1+b2���̂Ŝ�,
this term explains the ��T̂�1−� singularity in the “diameter” of
the vapor-liquid coexistence curve given by Eq. �3�, yielding
D1=b2Â0

− / �1−��. Mapping the asymmetric fluid criticality
into the symmetric lattice model is achieved in “incomplete
scaling” by a redefinition of the order parameter as 	1=��̂

−b2���̂Ŝ�. In “incomplete scaling” the chemical potential �
�up to the third derivative �4�� is an analytic function of
temperature along the vapor-liquid coexistence boundary and
along the critical isochore above the critical point �h1=0�.
Like in the lattice gas, the second derivative ��2� /�T2�h1=0

= �d2� /dT2�cxc remains finite at the critical temperature Tc,
while ��2P /�T2�h1=0= �d2P /dT2�cxc diverges proportionally to

the isochoric heat capacity ĈV.
At this point we encounter a major conceptual problem

with mapping real fluids into the lattice gas even at the
mean-field level. In the mean-field approximation the critical
part h3 of the thermodynamic potential, is represented by

Landau expansion �13�. When h1=��̂ ,h2=�T̂+b2��̂, and

	1=��̂−b2���̂Ŝ�, this expansion generates asymmetric

terms �b2�T̂���̂�3 and �b2���̂�5. However, in the simplest
equation of state that realistically describes fluid phase be-

havior, the van der Waals equation, the term ��T̂���̂�3 is
absent, while the term ����̂�5 exists. Furthermore, in most

classical equations of state, d�̂2 /dT̂2 along the liquid-vapor
coexistence exhibits a discontinuity directly related to the
existence of the independent fifth-order term in Landau ex-
pansion. The existence of the independent fifth-order term
makes exact mapping of fluids into the lattice-gas model by
the conventional mixing of physical fields impossible. This
problem was recognized a long time ago �2� but was not
clearly articulated. On the other hand, a theoretical
renormalization-group treatment of the fifth-order term
�26–28,30,31� resulted in the emergence of an independent
critical exponent �5�1.3 �32�. The exponent �5 does not
exist in symmetric models and is expected to belong exclu-
sively to fluids.

More recently, “incomplete scaling” was challenged by
Fisher and co-workers �19,20� who developed a new ap-
proach, known as “complete scaling for fluids.” They pro-
posed that both ��2� /�T2�h1=0 and ��2P /�T2�h1=0 diverge at
the critical point like the isochoric heat capacity. A principal
possibility of this effect has been known as the “Yang-Yang
anomaly” �24� and has been a subject of discussions for de-
cades �39�. The major conceptual result of “complete scal-
ing,” which we will explore in this paper, is that asymmetric
fluids can be consistently mapped into the symmetric Ising
criticality by appropriate mixing of the physical fields into
the scaling fields. Moreover, we argue in this paper that a
redefinition of the order parameter, suggested by “complete
scaling,” makes a special renormalization-group treatment of

the fifth-order term in the effective Hamiltonian for fluids
irrelevant, at least, in practice.

“Complete scaling” suggests that all three physical fields

��̂ ,�T̂, and �P̂ are equally mixed into three scaling fields
h1, h2, and h3. In linear approximation

h1 = a1��̂ + a2�T̂ + a3�P̂ , �16�

h2 = b1�T̂ + b2��̂ + b3�P̂ , �17�

h3 = c1�P̂ + c2��̂ + c3�T̂ . �18�

The dependent field h3 is a homogeneous function of h1 and
h2 as asymptotically given by Eq. �7�. Far away from the
asymptotic region, or if the phase-coexistence locus h1=0
exhibits a strong curvature in terms of the physical fields
�40�, the linear approximation might be insufficient and ap-
propriate nonlinear terms should be included.

Physical density-like properties, the molecular density
and entropy per unit volume, are given by the thermody-
namic relations

�̂ = � �P̂

��̂
	

T̂

, �̂Ŝ = � �P̂

�T̂
	

�̂

. �19�

Since the coefficients c1 and c2 can be absorbed by making
the thermodynamic potential h3 dimensional, as given by Eq.

�5�, while the coefficient c3= Ŝc, one can obtain by applying
Eq. �19� to Eqs. �16�–�18�,

�̂ =
1 + a1	1 + b2	2

1 − a3	1 − b3	2
, �20�

�̂Ŝ =
Ŝc + a2	1 + b1	2

1 − a3	1 − b3	2
. �21�

One can see that while the scaling fields are expressed as
linear combinations of the physical fields, the physical den-
sities are nonlinear combinations of the scaling densities.

III. MAKING “COMPLETE SCALING” SIMPLE

Before we apply complete scaling to describe asymmetry
in fluids, we note that the relations between scaling and
physical fields can be further simplified. The coefficients a1
and b1 can be absorbed by the two amplitudes in the scaling
function f±, such that a1=1 and b1=1. The coefficient c3

= Ŝc is determined by the choice of the critical value of en-

tropy. By adopting Ŝc= �kB�c�−1��P /�T�h1=0,c= �dP̂ /dT̂�cxc,c,
the slope of the saturation-pressure curve at the critical point,

one obtains a2=−a3�dP̂ /dT̂�cxc,c. Indeed, along the path h1

=0, asymptotically close to the critical point

� ��̂

�T̂
	

h1=0,c

+ a2 + a3� �P̂

�T̂
	

h1=0,c

= 0. �22�

On the other hand, it follows from the thermodynamic rela-
tion �15� that
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d�̂

dT̂
+ Ŝc −

�P̂

�T̂
= 0. �23�

Thus, with adopting Ŝc= ��P̂ /�T̂�h1=0,c, we obtain

���̂ /�T̂�h1=0,c=0 and

a2 + a3� �P̂

�T̂
	

h1=0,c

= 0. �24�

Furthermore, with such a choice of Ŝc, along the path h1=0,

h2 = �T̂�1 − b3
a2

a3
	 , �25�

and the density of entropy becomes proportional to the

weakly fluctuating scaling density, ���̂Ŝ���1+b3�	2

� �h2�1−�. With exception for a trivial renormalization of the

amplitudes in h2 and ���̂Ŝ�, the coefficient b3 plays no sig-
nificant role in asymmetry of fluid criticality. Indeed, as fol-
lows from Eqs. �20� and �21�, this coefficient can be inde-
pendently obtained only from the contributions to the density
behavior of order b3	1	2� �h2�1−�+�. With 1−�+��1.417,
this contribution is of higher order than a3	1

2� �h2�2� and
b2	2� �h2�1−�, and even significantly weaker than the linear
term. Therefore, for the sake of simplicity, we assume b3
=0. Hence, there are only two independent coefficients that
in the first approximation control the asymmetry in fluid
criticality, namely a3 and b2. In this approximation, the scal-
ing fields read

h1 = ��̂ + a3��P̂ − �dP̂/dT̂�cxc,c�T̂� , �26�

h2 = �T̂ + b2��̂ , �27�

h3 = �P̂ − ��̂ + �dP̂/dT̂�cxc,c�T̂ . �28�

Furthermore, by expanding Eqs. �20� and �21� and neglecting

all terms of higher order than linear of �T̂, we obtain

��̂ � �1 + a3�	1 + a3�1 + a3�	1
2 + b2	2, �29�

���̂Ŝ� � 	2. �30�

As a result, while the order parameter in fluids is, in gen-
eral, a nonlinear combination of density and entropy, the
weakly fluctuating scaling density 	2 in first approximation
is associated with the density of entropy only.

IV. EXPERIMENTAL CONSEQUENCES OF “COMPLETE
SCALING”

There are several important thermodynamic consequences
of “complete scaling” that can be checked experimentally.
First, the “diameter” of the vapor-liquid coexistence �̂d
should contain two major nonanalytical contributions, asso-

ciated with the terms a3�P̂ and b2��̂ in the scaling fields,

�̂d − 1 = a3�1 + a3�	1
2 + b2	2 + ¯

= D2��T̂�2� + D1��T̂�1−� + D0��T̂� + ¯ , �31�

where, in accordance with Eqs. �8� and �9�, D2=a3B0
2 / �1

+a3� and D1=−b2A0
− / �1−�� with B0 and A0

− being �experi-
mentally determined� physical amplitudes in the asymptotic
scaling power laws for the liquid-vapor densities, namely,

��̂� ±B0��T̂�� and isochoric heat capacity in the two-phase

region, ĈV�A0
−��T̂�−�. The simple relations between the

Ising-model critical amplitudes B̂0 , Â0
± , �̂0

± and the physical
amplitudes B0 ,A0

± ,�0
± �in the b3=0 approximation� read

B̂0 =
B0

1 + a3
, Â0

± = A0
±, �̂0

± =
�0

±

�1 + a3�2 . �32�

In “incomplete scaling” the Ising amplitudes and the physi-
cal amplitudes are identical.

Since 2��1−�, the term D2��T̂�2� should dominate near
the critical point. However, the apparent behavior of the “di-
ameter” clearly depends on the magnitude of the complete-
scaling mixing coefficient a3. In practice, even close to the
critical point, all three contributions in the “diameter” may
be significant and statistically correlated. Attempts to fit
some experimental and simulation data to Eq. �31� showed
very poor conversions �41�, mainly because of a strong cor-

relation between the linear term D0��T̂� and the nearly linear

term D1��T̂�1−�.

Second, the presence of the a3�P̂ term in h1 implies the
Yang-Yang anomaly: the divergence of the heat capacity in
the two-phase region is shared among the second derivatives
of pressure and chemical potential �19–21�. When applied to

the two-phase coexistence at �T̂�0, the reduced form of the
Yang-Yang relation �24� reads

�̂ĈV

T̂
= �d2P̂

dT̂2
	

cxc

− �̂�d2�̂

dT̂2	
cxc

, �33�

where �̂ is the reduced overall density. In the lattice-gas

model and in “incomplete scaling” �d2P̂ /dT̂2�cxc diverges at
the critical point such as the isochoric heat capacity, while

�d2�̂ /dT̂2�cxc remains finite. Contrarily, “complete scaling” at
�̂=1 yields �19,20�,

�d2�̂

dT̂2	
cxc

� − a3�d2P̂

dT̂2
	

cxc

� −
a3

1 + a3

ĈV

T̂
. �34�

Therefore, the strength of the Yang-Yang “anomaly” is deter-
mined by the magnitude of the mixing coefficient a3. Unfor-
tunately, experimental tests of the Yang-Yang anomaly seem
to be even more controversial than the attempts to separate
the two singular terms in the “diameter” of the coexistence
curve. Small traces of impurities can easily mimic such an
anomaly, thus making any conclusions unreliable �42�.

Another important consequence of complete scaling is a
stronger asymmetry in the isothermal susceptibility than has
been earlier predicted by “incomplete scaling.” The total sus-
ceptibility �̂= ���̂ /��̂�T̂, which contains two parts, symmetric
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�̂sym and asymmetric �̂asym, is, in general, a combination of
three symmetric Ising susceptibilities, strong �1, weak �2,
and cross �12, defined by Eqs. �10�–�12� �21,36�. A detailed
derivation of the isothermal susceptibility, based on
“complete-scaling,” has been made by Kim et al. �21�. As a
lower-order approximation of the result given in Ref. �21�,
one can obtain

�̂ = � ��̂

��̂
	

T̂

= �̂sym + �̂asym � �1 + a3�2�1 +
3a3

1 + a3
��̂	�1 + b2

2�2

+ 2�1 + a3�b2�12. �35�

When a3=0 �“incomplete” scaling�, Eq. �35� becomes iden-
tical to the result earlier reported in Ref. �36�.

By using expressions for the scaling susceptibilities along
the vapor-liquid coexistence �h1=0� given by Eqs. �10�–�12�,
one can derive from Eq. �35� �25�

�̂sym � �0
−��T̂�−
�1 + �1

−��T̂�� + ¯ � �36�

and

�̂asym � ± �0
−��T̂�−
� 3a3

1 + a3
B0��T̂�� − 2b2

�B0

�0
− ��T̂�1−�−�

+ ¯ 	 , �37�

where �1
− is the first �symmetric� correction amplitude, and

��0.5 is the “Wegner” correction exponent �43�. The com-
bination ��̂�− �̂�� / ��̂�+ �̂�� asymptotically behaves as

�̂� − �̂�

�̂� + �̂�
�

3a3

1 + a3
B0��T̂�� �38�

− 2b2
�B0

�0
− ��T̂�1−�−�, �39�

which, in principle, can be measured with static light scatter-
ing from the vapor and liquid coexisting phases. It contains,
like the “diameter,” two nonanalytic contributions with the

first �“complete-scaling”� term, ���T̂��, dominating. No ex-
periments have been so far performed to test “complete scal-
ing” by light scattering.

Finally, the vapor-liquid asymmetry makes the surface
tension � to be dependent on the surface curvature, 1 /R,
such that �=���1−2� /R� where �� is the surface tension
for the planar interface. In perfectly symmetric systems, such
as the lattice gas model or the “regular binary-solution”
model, the surface tension does not depend on curvature.
Most recently �25�, it has been shown that Tolman’s length �,
the curvature-correction coefficient in the surface tension,
can be expressed through a ratio of the two parts of the
susceptibility as

�

�
� −

�̂asym

2�̂sym

, �40�

where � is the correlation length of the density fluctuations in
the two-phase region, in which � also serves as the thickness
of the interface. The correlation length and/or thickness of
the interface diverges asymptotically as

� � �0
−��T̂�−�, �41�

where �0
− is the amplitude of the correlation length in the

two-phase region and �= �2−�� /3�0.630 �18�. The ampli-
tude �0

− is related to �0
+, the amplitude of the correlation

length in the one-phase region, by a universal ratio �0
+

�1.96�0
− �18�. By comparing Eqs. �36�, �37�, and �40�, one

can obtain that the Tolman length

� � � � 3a3

2�1 + a3�
B0��T̂��−� − b2

�B0

�0
− ��T̂�1−�−�−�	�0

−

� � � 3a3

2�1 + a3�
��̂ + cb2

���̂Ŝ�
��̂

	� , �42�

where � corresponds to a liquid droplet or a vapor droplet,
respectively, c=�B0

2 /�0
−A0

−�1.58, a universal amplitude ra-
tio. The behavior of Tolman’s length, given by Eq. �42�,
differs in an essential way from the results obtained within
the framework of “incomplete scaling” �44–46�: a new term,

���T̂��−�, emerges from the complete-scaling analysis. The
first term in Eq. �42� diverges more strongly, since �−�
�−0.304, whereas 1−�−�−��−0.065. In “incomplete
scaling,” where a3=0, Tolman’s length diverges very weakly,

namely as ��T̂�1−�−�−�= ��T̂�−0.065 �44,45�. The divergence of
Tolman’s length predicted by “complete scaling” may be
large enough to be detected in accurate experiments with
microcapillaries and in simulations. No such experiments
have been performed so far.

Overall, experimental verification of “complete scaling”
is not simple. The nonanalytical contributions in the “diam-
eter” are usually not large enough or/and strongly correlated
with analytic terms. Moreover, the “incomplete scaling” re-
sult may be perfectly valid for some specific systems, such as
the “penetrable sphere model” �16,44�, since that model has
an exact symmetry axis on which the chemical potential is an
analytic function of temperature �47�. Therefore, the major
question arises: does “complete scaling” have a solid experi-
mental support?

V. “DIAMETERS” IN FLUIDS: SEPARATING TWO
SOURCES OF ASYMMETRY

In this section we show the way to reliably determine the
two asymmetry coefficients, a3 and b2, and to conclusively
prove the validity of complete scaling by combining accurate
experimental and simulation liquid-vapor coexistence with
heat-capacity data. We have exploited the fact that the coef-
ficients D0 and D1 in Eq. �4� are actually not independent.
The weakly fluctuating scaling density 	2 is the critical part
of the entropy per unit volume, so that in the two-phase
region at average overall density �=�c,
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	2 � �Ŝ =
 �ĈV�cr

T
dT

� −
A0

−

1 − �
��T̂�1−��1 +

1 − �

1 − � + �
A1

−��T̂��	
+ B̂cr��T̂� , �43�

where

�ĈV�cr � A0
−��T̂�−��1 + A1

−��T̂��� − B̂cr �44�

is the critical �fluctuation-induced� part of the isochoric heat
capacity in the two-phase region and Bcr the so-called “criti-

cal background;” B̂cr=Bcr /kB is also a fluctuation-induced,
but analytical, part of the heat capacity. The correction-to-
asymptotic-scaling amplitude in the two-phase region A1

− is
approximately equal to the corresponding correction ampli-
tude A1

+ above the critical temperature �48�, while A0
+ /A0

−

�0.523 �18�. Therefore, Eq. �31� can be reexpressed as

�̂d − 1 �
a3

1 + a3
B0

2��T̂�2� − b2� A0
−

�1 − ��
��T̂�1−� − B̂cr��T̂�	 .

�45�

Since D0=b2B̂cr, Eqs. �31� and �45� contains only two adjust-
able parameters, a3 and b2.

The critical background was studied by Bagnuls and Ber-
villier in a three-dimensional field theory �48� and by Anisi-
mov et al. in crossover theory based on a renormalized Lan-
dau expansion �49�. According to the theory

B̂cr =
A0

+�A1
+��/�

R0�1 − ū��/� , �46�

where R0�0.7 is a universal number �48,49�; the parameter
ū is an effective coupling constant which depends on the
cutoff wave number � of the critical fluctuations. In the
infinite-cutoff limit ū is zero and relation �46� becomes uni-
versal �48,49�. For the lattice-gas �Ising� model �=1 �38�
and of order unity for simple molecular fluids �49�. Further-
more, for many simple fluids ū�0.4–0.5 �49�. Since the
exponent � /��0.2 is small and ū does not change much, the

relation between B̂cr, A0
+, and A1

+ for many simple fluids is
almost universal. Furthermore, since for ū�0.4–0.5 the cor-

rection amplitude A1
+�1, it is expected B̂cr�A0

+. Unfortu-
nately, only for a few fluids, such as methane �50� and ethane
�51�, the available heat-capacity data in the two-phase region

are accurate enough to estimate B̂cr with Eq. �46�. Accurate
heat-capacity data for SF6 have been obtained in a micro-
gravity experiment by Haupt and Straub �52�. Barmatz et al.
�53� fitted these data to crossover theory and obtained an
insignificant value of A1

±. This result, while it seems a bit
surprising, means that the value of ū for SF6 may be close to
unity. In this case Eq. �46� cannot be used. However, Eq.
�46� can be modified to a form that does not contain ū and
the amplitude A1

+. By using expressions for A0
+ and A1

+ from
the crossover theory �49,54�, one can obtain an explicit equa-
tion for Bcr,

B̂cr =
a0

2

�u0
�u*, �47�

where the constant u* is a coupling constant in the renormal-
ization group theory. For the three-dimensional Ising univer-
sality class u*�0.47 �49�. Equation �47� contains the

system-dependent ratio a0
2 /u0= �1/3��̄ĈV, where �̄ĈV is the

mean-field heat-capacity discontinuity at the critical point.
The asymptotic scaling amplitude A0

+ is also proportional to
the ratio a0

2 /u0, while B0 is proportional to �a0 /u0�1/2 �54�.
For the van der Waals fluid �̄ĈV=9/2 so that, with a0

2 /u0

=3/2 and �u* /��2.7, the critical background B̂cr�4, cor-
responding to Bcr�33 J /mol K.

Another way to estimate Bcr is to subtract the “ideal-gas”
heat capacity from the total heat-capacity background in the
one-phase region. This method may give realistic values of
Bcr for some simple fluids. The ideal-gas heat capacity for
simple fluids can be found in the literature �e.g., Ref. �55��.
For SF6, methane, and nitrogen this procedure gives the criti-
cal background 32 J /mol K, 30 J /mol K, and 29 J /mol K,
correspondingly. These values are very close to that obtained
for the van der Waals fluid and �for methane� also to the
value obtained with Eq. �46�. However, for ethane we ob-
tained a larger value, 57 J /mol K, which correlates with a
larger leading critical amplitudes A0

− and B0, presented in
Table I, and close to Bcr�50 J /mol K obtained with Eq.
�46�. Similar values of Bcr are obtained for the simulated
hard-core square-well �HCSW� model and the restricted
primitive model �RPM�. The amplitudes A0

+ for HCSW and
RPM were reliably calculated with the three-scale factor of
universality ��0

+A0
+ /B0

2�0.0581 �18�, where the amplitudes
�0

+ and B0 were taken from Refs. �56,57�. The values of A0
−

�A0
+ /0.523 were fixed in fits of the simulated heat-capacity

data for HCSW �57� and RPM �58� to obtain Bcr.
Although the critical background is a difficult parameter

to obtain accurately, we conclude that �with a possible ex-

ception for SF6� B̂cr is of the same order of magnitude as the

leading amplitude A0
+�0.5A0

−; indeed, for several fluids B̂cr
��0.4–0.5�A0

−. A relatively large value, 150 J /mol K ob-
tained for n-heptane could be possibly an overestimate,
which might be caused by an error in the evaluation of the
heat-capacity regular background through the ideal-gas heat
capacity.

We have examined a number of systems, including sev-
eral hydrocarbons, as well as two simulated models, namely
the HCSW model and the RPM of electrolyte. The HCSW
fluids consist of hard spheres with the diameter d, the attrac-
tive square well of depth � and interaction range 1.5d �56�.
The RPM consists of an equal number of positive and nega-
tive ions with hard-core diameter d �56�. The ions have
charges ±q0 and interact with each other via the Coulombic
potential. The potential energy ��r�= ±q0

2 /�r, where r is the
interparticle distance and � is the dielectric constant of me-
dium. The critical densities for HCSW and RPM listed in
Table I are made dimensionless as �cd

3 for both models,
while the critical temperatures are kBTc /� �HCSW� and
kBTc�d /q0

2 �RPM�.
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For some of the systems presented in Table I we could
find both heat-capacity and coexistence data in the near-

asymptotic range 10−4� ��T̂��0.01. In this range the terms
of higher order than linear in Eq. �45� are within experimen-

tal errors. Experimental data closer than ��T̂��10−4 were
avoided as they might be affected by errors in �c and Tc and
by other factors, such as gravity, impurities, etc. �3�. We
fitted the difference in the densities, ��−��, of the experi-

mental coexistence data to ���−��� /2�c=B0��T̂�� to obtain
B0 and the available heat-capacity data to Eq. �44� to obtain
A0

− and A1
− �when it was possible�. For several simple fluids

there are accurate vapor-liquid coexistence data, but no reli-
able heat-capacity data in the critical region. However, since
A0

− is a smooth function of the critical parameters within a
group of substances obeying the law of corresponding states,
the values of A0

− for HD, neon, ethene, and Freon-113 can be
reliably obtained by interpolation. The critical background
for neon and HD was fixed at the methane value Bcr
=30 J / �mol K� and for ethene at the value Bcr

=50 J / �mol K�. Since the parameter Bcr may be estimated

with a significant error �in some cases up to 20–30 %�, we
have also investigated the effect of such an error on the val-
ues of the asymmetry parameters a3 and b2. The effect on
complete-scaling coefficient a3 is less significant than that on
b2, which is in turn smaller than the error in Bcr. �See Fig. 3.�

The means of the liquid and vapor densities, ���
+��� /2�c, were fitted to Eq. �45� to obtain a3 and b2. The
results of the fits, including the standard deviations �, are
presented in Table I and illustrated by Figs. 4–15. In addi-
tion, in Table I we present the values of normalized “inter-
action volumes” �0

*, defined as �0
*=8�0

3�c, where �0
+, the am-

plitude of the correlation length in the one-phase region,
represents the range of intermolecular interactions. This am-
plitude can be directly obtained from a light-scattering ex-
periment �3� or from the heat-capacity amplitude A0

+ through
two-scale factor of universality, A0

+�c�0
3�0.171 �2,18�, such

that �0
*�1.37/A0

+�2.62/A0
−. The parameter �0

*=�c�8�0
3� can

be also interpreted as the reduced critical density �normalized
by the “density of interactions”�.

TABLE I. Critical parameters, amplitudes, normalized critical density, and asymmetry parameters for the studied systems. Notes: *

indicates reduced critical parameters. The values in parentheses are obtained by interpolation.

Tc

�K�
�c

�mol/diam3�
A0

−

�J/mol K�
Bcr

�J/mol K� B0 �0
* a3 b2 103�

HD cxc �14� 35.957 16.07 �65� −30 1.358 0.3469 −0.0127 −0.0593 0.03

Neon cxc �14� 44.479 23.97 �70� −30 1.497 0.3221 −0.0177 −0.0683 0.03

Methane cxc �65�, CV �50� 190.551 10.14 75 −30 1.551 0.3025 −0.0238 −0.0730 0.08

Nitrogen cxc �14�, CV �59� 126.214 11.20 78 −29 1.565 0.2884 −0.0177 −0.0701 0.04

Ethene cxc �14� 282.377 7.665 �90� −50 1.642 0.2506 −0.0035 −0.0745 0.28

Ethane cxc �14�, CV �51� 305.363 6.851 98 −57 1.649 0.2293 0.0014 −0.0603 0.41

HCSW cxc �56�, CV �57� 1.218* 0.3076* 69 −51 1.926 0.3140 0.0083 −0.0529 0.77

RPM cxc �56�, CV �58� 0.0507* 0.0760* 97 −41 3.635 0.1479 0.137 −0.483 0.51

Water cxc �69�, CV �70� 647.096 17.84 116 �−47� 2.035 0.1861 0.0618 −0.0482 0.45

n-pentane cxc �66,67�, CV �71� 469.610 3.204 157 �−63� 1.776 0.1436 0.110 0.0207 1.00

SF6 cxc �11�, CV �52,53� 318.707 5.012 143 −32 1.733 0.1576 0.181 0.0351 0.40

Freon-113 cxc �12� 486.968 3.026 �165� �−66� 1.841 0.1367 0.218 0.0483 0.53

n-heptane cxc �68�, CV �71� 539.860 2.318 188 −150 1.843 0.1201 0.369 0.0941 1.60

� �T
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FIG. 3. Heat-capacity data for ethane in the two-phase region
�59�. The solid line is a fit to Eq. �44�.
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FIG. 4. The liquid-vapor diameter for HD. The circles indicate
experimental data �14�. Curves, solid line is a fit to Eq. �45�, dashed
line represents the 2� term, and dotted line represents both 1−�
and linear terms.

JINGTAO WANG AND MIKHAIL A. ANISIMOV PHYSICAL REVIEW E 75, 051107 �2007�

051107-8



The fluids presented in Table I may be divided in two
groups, from HD to ethane and from water to n-heptane. For
the first group, the parameter a3 is very small �either negative
or positive� while the parameter b2 is negative. In such fluids
the “diameters” are mostly controlled by the terms propor-

tional to ��T̂�1−� and ��T̂�. Moreover, when both a3�0 and
b2�0, the two non-analytic contributions may largely com-
pensate each other, producing an imitation of a rectilinear
diameter �from HD to nitrogen, as seen in Figs. 4–7�. Such
compensation can explain why the “diameters” observed in
some simple fluids seem almost rectilinear �8,9�. For the sec-
ond group, a3 relatively large and positive while b2 is small
and usually positive. For such fluids the “diameters” are very

much curved; they are mostly controlled by the term ���T̂�2�

originating from “complete scaling” �see Figs. 12–15�. One
can also notice that the fluids in the first group have rela-
tively large critical molar densities and small molecular vol-
umes or, in terms of �0

*, large interaction volume with respect
to the molecular volume. The fluids in the second group have
relatively small critical molar densities and large molecular
volumes �small interaction volumes with respect to the mo-
lecular volumes�.

Two simulated models, HCSW and RPM, are somewhere
between these two groups. As seen from Figs. 10 and 11, the

“diameter” in these models is controlled by both ���T̂�2� and

���T̂�1−�+���T̂� contributions. The diameter in RPM looks
very much similar to that in water �Fig. 12� with almost
equal contributions from both sources of asymmetry.

VI. FLUID ASYMMETRY IN MEAN-FIELD
APPROXIMATION

The asymmetry coefficients a3 and b2 are system-
dependent; they are determined by details of intermolecular
interactions. This is why it is reasonable to assume that fluc-
tuations do not significantly affect the values of these param-
eters. In other words, we assume that, while the physical
properties are strongly affected by fluctuations in the critical
region, the relations between the theoretical scaling fields
and the physical fields are not. This assumption opens the
way for predicting the values of a3 and b2 from mean-field
equations of state.
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FIG. 5. The liquid-vapor diameter for neon. The circles indicate
experimental data �14�. Curves, solid line is a fit to Eq. �45�, dashed
line represents the 2� term, and dotted line represents both 1−�
and linear terms.
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FIG. 6. The liquid-vapor diameter for methane. The circles in-
dicate experimental data �65�. Curves, solid line is a fit to Eq. �45�,
dashed line represents the 2� term, and dotted line represents both
1−� and linear terms.
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FIG. 7. The liquid-vapor diameter for nitrogen. The circles in-
dicate experimental data �14�. Curves, solid line is a fit to Eq. �45�,
dashed line represents the 2� term, and dotted line represents both
1−� and linear terms.
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FIG. 8. The liquid-vapor diameter for ethene. The circles indi-
cate experimental data �14�. Curves, solid line is a fit to Eq. �45�,
dashed line represents the 2� term, and dotted line represents both
1−� and linear terms.
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In mean-field approximation the field-dependent potential
−h3 is given by Eq. �13�. The critical part of the order-
parameter-dependent thermodynamic potential � is obtained
through a Legendre transformation as

� = − h3 + h1	1 = 1
2a0h2	1

2 + 1
24u0	1

4. �48�

The ordering field is obtained as

h1 =
��

�	1
= a0h2	1 + 1

6u0	1
3. �49�

In zero field �h1=0� below the critical temperature Eq. �49�
yields the symmetric order parameter

	1 = ± �6a0

u0
	1/2

�− h2�1/2 �50�

while

	2 =
3a0

2

u0
h2. �51�

The actual asymmetric behavior of the vapor and liquid den-
sities is revealed by specific relations between the scaling
fields and the physical fields.

A. “Incomplete scaling” in mean-field approximation

With the convenient choice of the critical entropy value,

Ŝc= �dP̂ /dT̂�cxc,c and with neglect of the pressure mixing in
the ordering field h1 �a3=0 in Eq. �26�� the scaling fields and
densities read

h1 = ��̂, h2 = �T̂ + b2��̂ , �52�

	1 = ��̂ − b2���̂Ŝ�, 	2 = ���̂Ŝ� . �53�

Expanding the chemical potential as
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FIG. 9. The liquid-vapor diameter for ethane. The circles indi-
cate experimental data �14�. Curves, solid line is a fit to Eq. �45�,
dashed line represents the 2� term, and dotted line represents both
1−� and linear terms.
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FIG. 10. The liquid-vapor diameter for HCSW. The circles in-
dicate experimental data �56�. Curves, solid line is a fit to Eq. �45�,
dashed line represents the 2� term, and dotted line represents both
1−� and linear terms.
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FIG. 11. The liquid-vapor diameter for RPM. The circles indi-
cate experimental data �56�. Curves, solid line is a fit to Eq. �45�,
dashed line represents the 2� term, and dotted line represents both
1−� and linear terms.
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FIG. 12. The liquid-vapor diameter for water. The circles indi-
cate experimental data �69�. Curves, solid line is a fit to Eq. �45�,
dashed line represents the 2� term, and dotted line represents both
1−� and linear terms.
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��̂ = �̂11��̂�T̂ + 1
6 �̂30��̂3 + 1

2 �̂21��̂2�T̂ + 1
24�̂40��̂4 + ¯

�54�

and finding in first approximation ���̂Ŝ�=−�1/2��̂11��̂2, we
obtain from Eqs. �49�, �52�, and �53�,

h1 = ��̂ = �̂11��̂�T̂ + 1
6 �̂30��̂3 + 3

2 �̂11b2��̂2�T̂

+ 5
12�̂30b2��̂4 + ¯ , �55�

where �̂ij =�i+j�̂ /���̂i��T̂j are the derivatives of the chemi-
cal potential taken at the critical point.

Comparing Eqs. �55� and �54� we obtain a0= �̂11, u0
= �̂30, �̂21=3�̂11b2, �̂40=10�̂30b2, and the relation between
�̂21 and �̂40,

2�̂21

�̂11

=
3�̂40

5�̂30

. �56�

Therefore, in “incomplete scaling” only one mixing coeffi-
cient, b2, is responsible for fluid asymmetry in the critical
region.

However, for the simplest equation of state that describes
real-fluid behavior, the van der Waals equation, the term

�1/2��̂21��̂2�T̂ is absent, while the term �1/24��̂40��̂4 ex-
ists. This cannot happen if the both terms are proportional to
the same asymmetry coefficient b2. The existence of the in-
dependent asymmetry term makes exact mapping of fluids
into the lattice-gas model by “incomplete scaling” impos-
sible. Moreover, in “incomplete scaling” there is no discon-

tinuity in the second derivative d�̂2 /dT̂2 along the phase

coexistence and ��2�̂ /�T̂2�� along the critical isochore above
the critical temperature. Indeed, since for this discontinuity
thermodynamics yields �2�

�d2�̂

dT̂2	
cxc

− � �2�̂

�T̂2	
�=�c

= −
�̂11

2

�̂30
�2�̂21

�̂11

−
3�̂40

5�̂30
	 , �57�

it is straightforward from Eq. �56� that the discontinuity dis-
appears in the traditional “incomplete scaling.”

B. “Complete scaling” in mean-field approximation

In “complete scaling,” given by Eqs. �26�–�28�, in order
to obtain the expressions of a3 and b2 in terms of �̂ij, one

needs to expand both ��̂ and �P̂,

��̂ = �̂01�T̂ + �̂02�T̂2 + �̂11��̂�T̂ + 1
6 �̂30��̂3 + 1

2 �̂21��̂2�T̂

+ 1
24�̂40��̂4 + ¯ , �58�

�P̂ = P̂01�T̂ + P̂02�T̂2 + P̂11��̂�T̂ + 1
6 P̂30��̂3 + 1

2 P̂21��̂2�T̂

+ 1
24 P̂40��̂4 + ¯ , �59�

where the derivatives P̂ij =�i+jP̂ /��̂i�T̂j are taken at the criti-

cal point. Since �̂01= ���̂ /�T̂�h1=0,c=0 �by adopting Ŝc

= �dP̂ /dT̂�cxc,c� and a2+a3P̂01=a2+a3��P̂ /�T̂�h1=0,c=0, the
expansion of h1, given by Eq. �49�, becomes
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FIG. 13. The liquid-vapor diameter for SF6. The circles indicate
experimental data �11�. Curves, solid line is a fit to Eq. �45�, dashed
line represents the 2� term, and dotted line represents both 1−�
and linear terms.
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FIG. 14. The liquid-vapor diameter for Freon-113. The circles
indicate experimental data �64�. Curves, solid line is a fit to Eq.
�45�, dashed line represents the 2� term, and dotted line represents
both 1−� and linear terms.
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FIG. 15. The liquid-vapor diameter for n-heptane. The circles
indicate experimental data �12�. Curves, solid line is a fit to Eq.
�45�, dashed line represents the 2� term, dotted line represents both
1−� and linear terms.
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h1 = ��̂11 + a3P̂11���̂�T̂ + 1
6 ��30 + a3P̂30���̂3

+ 1
2 ��̂21 + a3P̂21���̂2�T̂ + 1

24��̂40 + a3P̂40���̂4 + ¯ .

�60�

Thermodynamic relations between �ij and Pij, such as P̂11

= �̂11, P̂30= �̂30, P̂21= �̂21+ �̂11, and P̂40= �̂40+3�̂30 �2�, help
to simplify Eq. �60� as

h1 = �1 + a3��̂11��̂�T̂ + 1
6 �1 + a3��̂30��̂3 + 1

2 ��1 + a3��̂21

+ a3�̂11���̂2�T̂ + 1
24��1 + a3��̂40 + 3a3�̂30���̂4 + ¯ .

�61�

By using 	2�−�1/2�a0	1
2, and 	1��1/ �1+a3����̂

− �1/2�1+a3����̂2+ �a3 / �1+a3�2��11b2��̂2, we reexpress ex-

pansion �49� in terms of ��̂ and �T̂,

h1 = a0h2	1 +
1

6
u0	1

3

=
a0

1 + a3
��̂�T̂ +

1

6
u0

1

�1 + a3�3��̂3

+ � �̂11
2 b2

1 + a3
−

�̂11a3

�1 + a3�2 +
�̂11

2

2�1 + a3�
b2	��̂2�T̂

+ � �̂11�̂30b2

6�1 + a3�
+

− a3u0

2�1 + a3�4 +
�̂11u0b2

4�1 + a3�3	��̂4 + ¯ .

�62�

The coefficients of each corresponding term in Eqs. �61� and
�62� must be equal. This condition yields four equations with
four unknown parameters a0, u0, a3, and b2. It is straightfor-

ward that terms ���̂�T̂ and ���̂3 yield the relations a0
= �1+a3�2�11 and u0= �1+a3�4�30, which make the mean-
field amplitude for the symmetric order parameter expressed
as

B̂0 = �6a0

u0
	1/2

=
1

1 + a3
B̄0 =

1

1 + a3
�6�̂11

�̂30
	1/2

. �63�

The amplitude B̂0 differs from the mean-field amplitude B̄0
for the coexisting densities by the same prefactor �1+a3�−1

as in the relation between the Ising amplitude for the order
parameter and the scaling amplitude B0 given by Eq. �32�.
The comparison of each asymmetry term, ���̂2�T̂ or ���̂4

in Eq. �61� and Eq. �62�, results in two equations involving
only two unknowns, a3 and b2. The slope of the rectilinear
linear diameter �2�

D =
�̂21

�̂30

−
3�̂11�̂40

5�̂30
2 . �64�

The condition h1=0 for the coexistence curve can be
solved by iteration to obtain the slope of the rectilinear di-
ameter. From Eq. �61�, which contains only a3, at h1=0 we
obtain

a3 = �2

3

�̂21

�̂11

−
�̂40

5�̂30
	��1 −

2

3

�̂21

�̂11

+
�̂40

5�̂30
	 . �65�

By rearranging this expression we have a simple equation to
be used in the further analyses,

a3

1 + a3
=

2

3

�̂21

�̂11

−
1

5

�̂40

�̂30

. �66�

By applying the condition h1=0 to Eq. �62� and using Eq.
�66� we obtain the expression of b2 in terms of �̂ij,

b2 =
1

�̂11
� �̂21

�̂11

−
1

5

�̂40

�̂30
	 . �67�

By separating the slope of the rectilinear diameter given by
Eq. �64� into two parts, a3 contribution and b2 contribution,
one obtains

D =
a3

1 + a3

6�̂11

�̂30

− b2
3�11

2

�̂30

. �68�

The result is equivalent to the slope obtained from Eq. �31�
in mean-field approximation by substituting 	1

2= �6a0 /u0�
��−�T̂�, 	2= �3a0

2 /u0��T̂, a0= �1+a3�2�̂11, and u0= �1
+a3�4�̂30. One may notice that 6�̂11/ �̂30 is the square of the

mean-field amplitude B̄0 while 3�̂11
2 / �̂30 is the mean-field

heat-capacity discontinuity �̄ĈV at the critical point. Finally,

D =
a3

1 + a3
B0

2 − b2�̄ĈV. �69�

Since in mean-field approximation �=0 and �=0.5, both

terms, ���T̂�2� and ���T̂�1−�, in Eq. �31� become linear. Fur-
thermore, the relation between the isochoric heat-capacity

discontinuity �̄ĈV at the critical density and the mean-field

discontinuity of the chemical potential �̄�̂ reads

a3

1 + a3
�̄ĈV = − �̄�̂ =

�̂11
2

�̂30
�2�̂21

�̂11

−
3�̂40

5�̂30
	 �70�

which is the mean-field equivalent of the complete-scaling
result given by Eq. �34�.

VII. ASYMMETRY COEFFICIENTS FROM MEAN-FIELD
EQUATIONS OF STATE

Expressions �66� and �67� can be used to obtain the values
of the asymmetry coefficients a3 and b2 from mean-field
�“classical”� equations of state. All analytic mean-field equa-
tions of state asymptotically yield a quadratic parabola and a
rectilinear diameter for the coexistence curve, and a finite
discontinuity in the isochoric heat capacity at the critical
density �60� as explained in Sec. VI.

A. van der Waals model

The van der Waals equation in �P ,� ,T� variables reads
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P =
�kBT

1 − b�
− a�2, �71�

where a and b are system-dependent constants associated
with attraction and repulsion between molecules, respec-

tively. By rescaling �̃=b� , P̃= Pb, and ã=a /b, we obtain

P̃

kBT
=

�̃

1 − �̃
−

ã�̃2

kBT
. �72�

The coordinates of the critical point can be found from the
stability conditions

� ��

��
	

T
=

1

�
� �P

��
	

T
= 0, �73�

� �2�

��2 	
T

= −
1

�2� �P

��
	

T
+

1

�
� �2P

��2 	
T

= 0 �74�

as

kBTc

ã
=

8

27
, �̃c =

1

3
. �75�

By integration, one can obtain the density of the Helmholtz
energy for the van der Waals fluid,

���̃Â� =
�̃A − �̃Aig

kBT
= �̃ ln

�̃T̂

1 − �̃
− �̃ −

ã�̃2

kBT
, �76�

where Aig=�CP
ig�T�dT−T�CP

ig�T�dT /T is the ideal-gas ca-
loric background. The chemical potential

�̂ − �̂ig = ln
�̃T̂

1 − �̃
+

�̃

1 − �̃
−

2ã�̃

kBT
, �77�

where �̂ig= Âig. Taking derivatives of the chemical potential
with respect to density and temperature, we obtain the values
of the derivatives at the critical point,

�̂11 = 9/4, �̂21 = 0, �̂30 = − �̂40 = 27/8. �78�

Substituting �̂ij into Eq. �64�, Eq. �66�, and Eq. �67�, we
obtain the slope D of the rectilinear diameter, as well as the
asymmetry coefficients a3 and b2 the for the van der Waals
fluid,

D =
�̂21

�̂30

−
3�̂11�̂40

5�̂30
2 =

2

5
, �79�

a3 = 1
4 , b2 = 4

45 . �80�

B. Mean-field lattice gas

The lattice-gas is a symmetric model with the zero-slope
rectilinear diameter. The mean-field equation of state for the
lattice gas reads �61�

P̃

kBT
= − ln�1 − �̃� −

ã�̃2

kBT
, �81�

where the density, the pressure, and the interaction constant

are rescaled as �̃=�l0
3 , P̃= Pl0

3, and ã=al0
−3 with l0 being lat-

tice spacing. The chemical potential of the lattice gas is

�̂ − �̂0 = ln
�̃T̂

�1 − �̃�
−

2ã�̃

kBT
. �82�

From the critical conditions we obtain the critical parameters

kBTc

ã
=

1

2
, �̃c =

1

2
�83�

and the derivatives of the chemical potential at the critical
point

�̂11 = 2, �̂21 = 0, �̂30 = 4, �̂40 = 0. �84�

Since both derivatives �̂21 and �̂40 in the lattice gas are zero,
it is straightforward that a3=0 ,b2=0, and D=0.

C. Fine-lattice discretization

Moghaddam et al. �62� developed a fine-lattice discretiza-
tion model, which represents a crossover between the sym-
metric lattice gas and the asymmetric continuous van der
Waals fluid by introducing a discretization parameter, �
= l / l0�1, where l is the diameter of the spherical molecule
and l0 is the lattice spacing,

P̃

kBT
= � ln�1 +

�̃

��1 − �̃�
	 −

ã�̃2

kBT
, �85�

when �=1 is the lattice gas limit and �→� approaches the
van der Waals fluid. This model makes it possible to trans-
form a symmetric fluid system to an asymmetric one by tun-
ing the discretization parameter �.

The chemical potential of the fine-lattice discretization
model has the form

�̂ − �̂0 = ln
�̃T̂

1 + �̃�1/� − 1�
+ � ln�1 +

�̃

��1 − �̃�
	 −

2ã�̃

kBT
.

�86�

Then the critical density and temperature are both functions
of the parameter �,

1 + �2

�
− 4	�̃c − 3�1

�
− 1	�̃c

2 = 0, �87�

kBTc

ã
= 2�̃c� 1 − �

1 + �1/� − 1��c
+

�

1 − �c
	−1

. �88�

These equations can be solved numerically. Taking the
derivatives �̂ij and using Eqs. �64�, �66�, and �67�, we obtain
crossover from D=0,a3=0, and b2=0 for the lattice gas to
D=2/5 ,a3=1/4, and b2=4/45 for a continuum van der
Waals fluid, as shown in Figs. 16 and 17. The fine-lattice
discretization model shows that the ratio of the molecular
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size and the lattice spacing �= l / l0 can tune the magnitude of
vapor-liquid asymmetry.

D. Effects of three-body interactions

Let c be a parameter that indicates the relative strength of
three-body interactions with respect to the lattice-gas two-
body interactions �14�. The chemical potential of the lattice-
gas model with an extra three-body interaction term has the
form

�̂ − �̂0 = ln
�̃T̂

1 − �̃
−

2ã�̃

kBT
�1 −

3

2
c�̃	 . �89�

Therefore, the critical density and temperature depend on the
parameter c as

�6c + 4��c − 9c�c
2 − 2 = 0 �90�

and

kBTc

ã
= �̃c�1 − �̃c��2 − 3c�̃c� . �91�

By substituting the critical parameters into the derivatives of
the chemical potential �̂ij and using Eqs. �64�, �66�, and �67�,
we obtain the effects of three-body interactions on D,a3, and
b2 for the lattice-gas model as shown in Figs. 18 and 19. The
vapor-liquid asymmetry increases with increase of the con-
tribution of three-body interactions.

E. Debye-Hückel model

An equation of state which represents the Debye-Hückel
interaction between ions has the form �29�

P̃

kBT
=

�̃

1 − �̃
−

ã�̃3/2

kBT
. �92�

Using the same procedure as for other mean-field equations
of state we obtain �kBTc�3/2=0.429ã, �̃c=0.2, a3=0.364, and
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FIG. 16. Fine lattice-gas discretization model: crossover be-
tween the lattice gas and the van der Waals fluid.
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FIG. 18. Lattice-gas model with three-body interactions: cross-
over from symmetric lattice gas to asymmetric lattice gas.
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b2=0.043. This result shows that the “complete scaling” con-
tribution into the vapor-liquid asymmetry, associated with
the mixing coefficient a3, in the Debye-Hückel model is
more significant than that in the van der Waals model.

F. Redlich-Kwong and Peng-Robinson equations of state

The Redlich-Kwong and Peng-Robinson equations are
analytic equations commonly used in engineering �63�. In the
Redlich-Kwong the van der Waals-like attraction term is
made temperature dependent, such that

P̃

kBT
=

�̃

1 − �̃
−

ã�̃2

kBT3/2�1 + �̃�
. �93�

The critical parameters and asymmetry mixing coefficients
for the Redlich-Kwong equation are obtained as kBTc

3/2

=0.203ã, �̃c=0.26, a3=0.4, and b2=0.068. Therefore, the
temperature dependence of the attraction part in the equation
of state make the “complete scaling” vapor-liquid asymme-
try, associated with the mixing coefficient a3, more signifi-
cant than that in the van der Waals model.

The Peng-Robinson equation reads

P̃

kBT
=

�̃

1 − �̃
−

ã�̃2�

kBT�1 + 2�̃ − �̃2�
, �94�

where �= �1+ f����1− T̂1/2��2 and f���= �0.374 64
+1.542 26�−0.269 92�2�. In addition to a temperature de-
pendence of the attraction term, the equation contains the
so-called acentric factor �, a phenomenological parameter
associated with the shape and size of molecules. Since in the
Peng-Robinson equation the acentric factor is coupled with
the dependence of temperature, the fluid-phase asymmetry
should strongly depend on �. For �=0, the critical param-
eters and asymmetry coefficients of the Peng-Robinson equa-
tion are obtained as kBTc=0.158ã, �c=0.221 a3=0.493, and
b2=0.082.

The results for the classical equations of state are summa-
rized in Table II. Interestingly, for the Peng-Robinson equa-
tion, the value of a3 does not change as the asymmetric fac-
tor � increases, however, since b2 decreases, the overall
asymmetry, represented by D, increases.

G. Flory-Huggins model with three-body interactions

The chemical potential of the Flory-Huggins model
�72,73� with three-body interactions

�̂ − �̂0 = � 1

N
ln �̃ − ln�1 − �̃�	 −

2ã�

kBT
�1 −

3

2
c�̃	 , �95�

where N= l / l0�0 is the effective association number. The
Flory-Huggins model was originally formulated and com-
monly used for N 1, to describe thermodynamics of long
polymer chains in a monomerlike solvent �72�. However, one
may consider N as a phenomenological parameter that is also
allowed to be �1. In a certain sense, the parameter N is
similar to the fine-lattice discretization parameter �, however,
in contrast to the fine-lattice discretization model, the lattice
spacing l0 is now fixed, while the molecular volume may
change. While at �→� the fine-lattice discretization model
is reduced to the van der Waals equation, the limit N→� in
the Flory-Huggins model represents the � point, the limiting
phase separation point at zero density and infinite molecular
volume. The critical parameters �c and Tc of the model given
by Eq. �95� are both functions of N and c,

6c�N − 1��c
3 + �3c�2 − N� − 2�N − 1� + 6c��̃c

2 − �6c + 4��̃c + 2

= 0, �96�

TABLE II. Dimensionless derivatives of the chemical potential and asymmetry parameters for mean-field equations of state.

�̂11 �̂21 �̂30 �̂40 D a3 b2

Lattice gas 2 0 4 0 0 0 0

van der Waals 2.25 0 3.375 −3.375 0.4 0.25 0.089

Debye-Hückel 2.344 −1.172 0.977 −2.930 3.120 0.364 0.043

Redlich-Kwong 2.739 −0.815 2.145 −5.192 1.474 0.400 0.068

Peng-Robinson
�=0 2.266 −0.979 1.658 −5.125 1.944 0.493 0.082

�=0.1 2.516 −1.087 1.658 −5.125 2.158 0.493 0.074

�=0.4 3.212 −1.388 1.658 −5.125 2.755 0.493 0.058
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FIG. 20. Parameter a3 in the Flory-Huggins model with three-
body interactions as a function of �̃c and N. Stars �connected by a
solid line� indicate N=1. Solid curve is a guidance for real fluids
shown in Fig. 24.
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kBTc

ã
=

N�̃c�1 − �̃c��2 − 3c�̃c�
1 − �̃c�1 − N�

. �97�

As shown in Figs. 20 and 21, both a3 and b2 start from
small negative values, when N�1, and generally increase as
the molecular volume becomes larger. When N=1 and c=0,
the model is reduced to the symmetric lattice-gas model.
When N or c increase, the critical density �c becomes
smaller, which means that, generally, a larger molecular vol-
ume and stronger three-body interactions increase the phase
asymmetry.

VIII. CROSSOVER BETWEEN RECTILINEAR DIAMETER
AND “COMPLETE-SCALING” SINGULAR DIAMETER

Since the thermodynamic properties in the critical region
are strongly affected by the fluctuations of the order param-
eter, all mean-field equations of state fail near the critical
point. Wyczalkowska et al. �74� developed a crossover van
der Waals equation which satisfies the scaling theory near the
critical point and is reduced to the classical van der Waals
equation far away from the critical point. The crossover pro-
cedure �49�, which execute transformations of the thermody-
namic variables in the Helmholtz energy, is based on the
renormalization-group theory of critical phenomena �1� and
can be, in principle, applied for other, more realistic, equa-
tions of state �4�. The quality of crossover transformations
used in Ref. �74� is confirmed by excellent agreement be-
tween the crossover theory and accurate simulation data for
the three-dimensional Ising model with a variety of interac-
tion ranges �38�. However, in Ref. �74� the vapor-liquid
asymmetry was incorporated in crossover procedure in the
way given by “incomplete scaling.” As a result, the second
derivative of the chemical potential with respect to tempera-
ture was obtained finite at the critical point, the Yang-Yang
anomaly was absent, and the singular diameter contained the

��T̂�1−� term only.
In this section we show how the rectilinear diameter af-

fected by fluctuations in the critical region transforms into
the singular diameter, splitting in two nonanalytic terms,

���T̂�1−� and ���T̂�2�, as predicted by complete scaling.
Equations �29� and �30� are valid in both mean-field and
scaling regimes. Therefore, in order to obtain a crossover
equation for ��̂ one needs crossover expressions for 	1 and
	2. An explicit crossover expression for 	1 in zero field was
suggested by Gutkowski et al. �75� as an approximation of a
more rigorous but implicit result of the crossover theory
�38,49,54�:

	1
2 = �−

6u0

a0
2 h2	Y�2�−1�/�, �98�

where Y is a crossover function which depends on a dimen-
sionless parameter ct �inversely proportional to the square of
the intermolecular interaction range�. The crossover function

Y is defined such that at ��T̂� ct
3/2 Eq. �98� is reduced to the

mean-field expression �50�. The scaling limit given by Eq.

�8� is recovered at ��T̂�!ct
3/2 asymptotically close to the

critical point.
Crossover behavior of the second scaling density 	2 in

the two-phase region cannot be represented by an explicit
equation. This behavior was obtained by the numerical inte-
gration of the crossover behavior of the isochoric heat capac-
ity for the van der Waals fluid reported in Ref. �74�. In Fig.
22 crossover between the van der Waals rectilinear diameter
�D=2/5� and complete-scaling singular diameter is shown
for a relatively short range of interactions, ct=1/2. It is seen
from this figure that the fluctuation-induced shift in the clas-
sical van der Waals critical density is mainly controlled by

the ��T̂�2� nonanalytic term, since the van der Waals value of
a3 is relatively large �a3=1/4�.

Finally, in Fig. 23 we show crossover between the classi-

cal discontinuity in ��2�̂ /�T̂2�� and the asymptotic scaling
divergence of this derivative for a van der Waals fluid af-
fected by fluctuations with a short range of interactions, ct
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FIG. 21. Asymmetry parameter b2 in the Flory-Huggins model
with three-body interactions as a function of �̃c and N. Stars, con-
nected by a solid line, indicate N=1. Solid curve is a guidance for
real fluids shown in Fig. 24.
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=1. While this divergence is predicted by “complete scal-
ing,” in the traditional “incomplete” scaling the classical dis-
continuity simply disappears in the critical region making

��2�̂ /�T̂2�� finite at the critical point �74�.

IX. DISCUSSION

As early as in 1930s, Eyring �76� discussed the origina-
tion of inclinations in vapor-liquid rectilinear diameters. Ey-
ring considered a lattice that thermally expands as the tem-
perature increases. Therefore, the higher the temperature, the
lower the average density of the coexisting phases with an
inclination of the rectilinear diameter in the right direction,
an effect similar to real fluids. In 1972 Widom �6� gave a
comprehensive review of vapor-liquid asymmetry near the
critical point. Widom showed that in the so-called

penetrable-sphere model �16� a nonanalytic term ���T̂�1−�

appeared asymptotically close to the critical point. In fact, as
it was recently shown �47�, the penetrable sphere model has
an exact symmetry axis on which the chemical potential is an
analytic function of temperature. This is why “incomplete

scaling,” which predicts a finite ��2�̂ /�T̂2�� at the critical

point and a single leading nonanalytic term, ���T̂�1−�, in the
“diameter,” may be perfectly valid for some specific models.

Our study of the phase asymmetry in various fluids has
shown that the nature of the asymmetry can be properly un-
derstood only in the framework of “complete scaling” for-
mulated by Fisher and co-workers �19–21�. Generally, in the
critical region the rectilinear diameter splits into two singular

terms, namely ���T̂�1−� and ���T̂�2�. The ��T̂�1−� term origi-
nates from a coupling between the symmetric order param-

eter and entropy, while the ��T̂�2� is caused by coupling be-
tween the order parameter and molecular volume. In the
mean-field regime both nonanalytic terms converge into the
rectilinear diameter predicted by classical equations of state.

In the diameters of some fluids, such as SF6, C2F3Cl3, and

n-C7H16, the ��T̂�2� term dominates �a3 is relatively large

and positive� while in many other fluids, such as HD, Ne, N2,
and CH4, the two singular contributions in diameter largely
compensate each other �a3 is small and negative, b2 is also
negative�, creating an illusion of rectilinear diameter even
relatively close to the critical point. In Fig. 24 the two asym-
metry coefficients are plotted against the normalized critical
density �0

*=�c�8�0
+3� �which also may be defined as reduced

“interaction volume”�, where the amplitude of the correlation
length �0

+ �representing the range of interactions� is obtained
from the heat-capacity amplitude A0

+ through the two-scale
factor of universality, A0

+�c�0
3�0.171 �2,18�. A general trend

in the two sources of asymmetry is clear: the ��T̂�2� term,
predicted by complete scaling, is a dominant contribution
into the singular diameter if the molecular size and/or
interaction-range ratio is large. Apparently, �0 does not in-
crease significantly with increase of molecular volume in
simple fluids �3�. Thus, when the molecular size is large, the

��T̂�2� term is dominant. For fluids with small molecules, the
major contribution in the “diameter” is given by a coupling
between the order parameter and entropy. However, when
the molecular size becomes very small, this contribution van-
ishes. In particular, for 3He the parameter �0

*�1.37/A0
+

�0.4 �54� and, in accordance to the guidance given by Fig.
24, the parameter a3 is expected to be zero. The parameter b2
is also expected to be very small and negative, but not van-
ishing, since the estimated slope of the “diameter” in 3He is
about 0.02 �10�. The same order-of-magnitude value is ex-
pected for b2, when estimated with the mean-field expression
�68�.

One can see in Fig. 24 that both a3 and b2 depend strongly
on the molecular volume and thus on the molecular polariz-
ability. For real fluids these two asymmetry coefficients are,
in principle, independent but somehow correlated. In particu-
lar, for the van der Waals fluid a3 and b2, given by Eq. �80�,
are not independent and can be expressed through each other
with Eqs. �66� and �67� at the condition �̂21=0. One can also
learn from our studies of various mean-field equations of
state that depending on the interplay between three-body in-
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teractions and molecular size, the contribution associated ei-
ther with a3 or with b2 may be eliminated.

A simple physical interpretation of the “complete-scaling”
coefficient a3 is obtained for liquid binary mixtures by Cer-
deiriña et al. �77�. It is shown in Ref. �77� that the asymme-
try of liquid-liquid coexistence in terms of mole fractions,
like the vapor-liquid asymmetry in terms of molar densities,
originates from two different sources: one is associated with
a correlation between entropy and concentration and gener-

ates a nonanalytic term ���T̂�1−�, whereas another source is
the difference between the molecular volumes of the solvent
and of the solute. This difference generates a lower-order,

and thus more significant, nonanalytic term ���T̂�2�. By ana-
lyzing coexisting curves of liquid solutions of nitrobenzene
in a series of hydrocarbons �from n-pentane to
n-hexadecane�, Cerdeiriña et al. have observed that the am-

plitude of the ��T̂�2� term near-linearly correlates with the
solvent and/or solute molecular-volume ratio and vanishes
when the molecular volumes are equal.

X. SUMMARY

In this paper, the nature of asymmetry in fluid criticality
has been investigated in the framework of “complete scal-
ing.” We have simplified the formulation of “complete scal-
ing” to a form with only two independent mixing coefficients
a3 and b2 and made it convenient for practical use by a
proper choice of the critical entropy Sc=�c

−1��P /�T�h1=0,c.
We have also developed a method to obtain the asymmetry
coefficients a3 and b2, responsible for two different sources
of the asymmetry, from mean-field equations of state. By
analyzing several classical equations of state, we have found

that the vapor-liquid asymmetry in fluids near the critical
point can be controlled by molecular parameters, such as the
molecular size and the relative strength of three-body inter-
actions. By combining vapor-liquid coexistence and heat-
capacity data, we have unambiguously proved the experi-
mental and simulation evidence of “complete scaling.” A
number of systems, eleven real fluids and two simulated
models �the hard-core square-well fluid and the restricted
primitive model�, have been analyzed. The asymmetry in
fluid criticality originates from a coupling between the sym-
metric order parameter and entropy which produces a term

���T̂�1−� in the coexistence-curve diameter and from a cou-
pling between the order parameter and molecular volume

which produces a term ��T̂�2�. The ratio of molecular size to
the range of interactions plays a crucial role in the asymme-
try of fluids. In fluids with relatively small molecules and
relatively large range of interactions the asymmetry is small
and even may be negligible �3He�. Another important con-
clusion of our study is that, since near-critical vapor-liquid
asymmetry is completely determined by the Ising-model
critical exponents, there is no need, at least in practice, for a
special renormalization-group theoretical treatment of the
asymmetric fluid criticality.
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